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Quark model predictions are discussed 

for Primakoff excitation of hyperon resonances, total 

hyperon-nucleon cross sections and diffractive excitation. 

The U spin selection rule forbidding electromagnetic 

excitation of negatively charged decuplet resonances is 

shown to hold even in the presence of large SU(3) symmetry 

br caking. A new model for diffractive excitation is pre- 

sented which suggests the existence of new hyperon reson- 

ances, not yet discovered, which would be observed in dif- 

fractive excitation but only weakly couplet to two body 

formation and decay channels. The SU(3) partners of the 

Roper resonance N(14701, might be such states and be 

found with hyperon beams. 

The availability of hyperon beams raises the possibility 

of observing new strong-interaction phenomena not previously available 

to experiment. The presence of a strange baryon in the initial 

state allows the study of strange-baryon transitions without 

strangeness exchange. The present discussion considers three types 

of strangeness-conserving hyperon transitions that appear to be of 

interest: (1) electromagnetic transitions, (2) hadron reactions with 

exchanges of nonstrange Reggeons (p. w, etc. 1, and (31 diffractive 

excitation. Electromagnetic transitions can be studied by the 
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Primakoff effect, for which a strong excitation of the St decuplet is 

expected. However, a U-spin selection rule’ forbids this excitation 

for negatively charged hyperons but allows it for neutral and positive 

baryons. The extent to which this selection rule is violated by SU(3) 

symmetry breaking is of particular interest, since the most readily 

available hyperon beams have negative charge. The couplings of 

nonstrange bosons and Reggeons to strange baryons is of interest 

because of still untested quark-model and symmetry predictions for 

these couplings. Diffractive excitation might produce new hyperon 

resonances which are not excited by strangeness exchange and which 

appear only weakly in phase-shift analyses-e. g., the SU(3) partners 

of the Roper N(l470) and other diffractively excited nonstrange baryon 

resonances. 

Theoretical understanding of these questions is not very 

well founded, but the quark model seems to give a good description of 

hadron systematics and spectroscopy. These points will therefore be 

examined with the aid of the quark model to see if any new insight can 

be obtained. 

I. ELECTROMAGNETIC EXCITATION OF BARYON RESONANCES 

reactions 

Decuplet baryons can be excited by the electromagnetic 
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which can be studied by scattering a hyperon beam on a heavy nucleus 

and looking for the Primakoff effect2 

2 t Pb - Y 
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t Pb, (24 



z- + pb - J-- t Pb. (2b) 

The excitation of the positively charged baryons-reaction (la) or 

(lb)-is allowed by U spin, and the photoproduction process 

YfP-A 
f 

1s known to be strong. The excitation of the negatively 

charged hyperons-reaction (ic) or (id)-is forbidden by U spin. 

However U-spin conservation is known to be broken. The quark model 

provides an estimate of the magnitude of this symmetry-breaking 

effect and also gives a physical picture that guides the intuition better 

than the abstract algebraic statement that the initial state has U = f 

for all four reactions (1) while the final state has U = i for the positive- 

charge reactions (la) and (lb) but has U = + for the negative-charge 

reactions (ic) and (id). 

In the quark model, the proton consists of two p quarks 

coupled to total spin S = 
P 

i and one n quark which is coupled to the p 

quarks to give a total spin of $. In the At+, the three quarks are coupled 

to a total spin of $. The electromagnetic excitation of the A ’ is found 

experimentally to be dominated by the magnetic dipole transition. 
3 

This is predicted by the quark model and has a simple physical 

interpretation. A magnetic field acting on the quarks in the proton can 

flip the spin of the n quark relative to that of the p quarks to induce 

the transitions from the it to the St state. Since the charge of the p 

quark is Q = t$ while the charge of the n quark is Q = - $, the 
P n 

magnetic moments of the p and n quarks have opposite signs. A 

magnetic field acting on a system of p and n quarks thus rotates the 

two spins in opposite directions and easily rotates the spin of the n 

quark relative to that of the p quarks to make the transition. The 

same picture applies to the excitation of the E 
t 

which contains two 

p quarks and a X quark since QX = Qn 7 - $. 

The negatively charged hyperons Z- and s’- contain 

only n and A quarks. The E- has two n quarks and one X; the z- 

has two A quarks and one n. The U-spin selection rule has a simple 
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interpretation in this model. Since the charges of the n and A quarks 

are equal, their magnetic moments are also equal in the U-spin 

symmetry limit. In this limit, an external magnetic field applied to 

the hyperon rotates all the quarks together by the same amount and 

therefore leaves the total spin unchanged. There is no force that 

rotates the spin of the odd quark in a direction opposite to the spin of 

the other two quarks as in the case of the positive baryons. Thus the 

dominant transition in the case of negative hyperons is an elastic spin 

flip of the whole hyperon. 

The selection rule is broken if the magnetic moments of 

the n and A quarks are not quite equal. In this case the magnetic 

force on the two types of quarks is not exactly the same and one is 

rotated more than the other by an external magnetic field. A quantitative 

estimate of this effect is obtained from the explicit form of the 

magnetic-moment operator for the baryons in the reactions (1). Each 

of these baryons contains two identical quarks and one odd quark of a 

different type. We therefore consider the case of a system containing 

two quarks of,type a and one of type b, where (a, b) = (p, n) for the 

proton, (p, X) for the I: ‘, (n,A) for the C-, and (A, n) for the ES. 

The magnetic-moment operator ‘; for a~quark is 

proportional to its spin r with proportionality factor g which depends 

upon the type of quark. Thus 

ca = kQa a (3=) 

‘b 
- = gbsb. (3b) 

The total magnetic moment of the three-quark system is then given by 

lTB = ci ci = Qa f !zb;Sb (4=) 

where 5, is the total spin of the two a quarks. This is conveniently 

rewritten 



;‘B = h, + 9,) ‘3, + Sb) f ~cs, - gb) iSa -sb) 
(4b) 

= h, + 9,) & + tcg, - 9,) ‘3, - Sb)’ 

where 

is the total angular momentum of the baryon. 

The first term on the right-hand side of Eq. (4b) is 

proportional to the total-angular-momentum operator and simply 

rotates the spin of the whole baryon without producing excitations. The 

entire contribution to the excitations comes from the second term, 

which is proportional to ga - gb. This term vanishes, as expected, 

if the two types of quarks present in the system have equal magnetic 

moments. 

The transition matrix elements for the reactions (1) are 

proportional to the matrix elements of the second term in Eq. (4b) 

between the initial and final baryon states. In each of these baryons, 

two quarks of a type a are coupled to spin 1 and this pair is coupled 

to one quark of type b to make a spin of $ in the initial state and a 

spin of $ in the final state, thus the calculation of the matrix element 

is identical in all four cases, except for the multiplicative factor 

ga - gb. The cross section is proportional to the square of the transition 

matrix element. That is, 

*- k* - s,? 2 
qyc--Y ) % = 

T(VP - a+) (9, - q2 

=$. I-- > 

! J 
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gn 

- 
where (r denotes the cross section corrected for differences in phase- 

space factors. In writing this expression, we have substituted 
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(a, b) = (n,X) for the C- and (a, b) : (p, n) for the proton and we have used 

the quark-model value g 
P 

= -2gn that gives excellent agreement for the 

ratio of neutron and proton magnetic moments. 

The result (5) indicates that U-spin symmetry breaking 

should have a very small effect on the breaking of the selection rule. 

Even if gA differs from gn by 30% (which would be an appreciable 

symmetry breaking), the C- excitation cross section would still be only 

1% of that for the 4. 

Another possible breaking of SU(3) symmetry is an 

admixture of decuplet in the C-, analogous to the d-wave admixture 

in the deuteron. Estimates of such admixtures give 15% or 20% in 

amplitude. 
4 

Their contribution to transition probabilities is proportional 

to the square of the mixing amplitude. This again suggests effects of 

only a few percent. An exact calculation of this effect is more 

complicated and not feasible. There are too many unknown parameters, 

since this transition would be electric quadrupole rather than magnetic 

dipole and there could be mixing in the Y* as well as in the X-. 

II. NEW COUPLINGS OF HYPERONS AND BOSONS 

All this theoretical argument can be questioned because 

of experimental evidence that quark-model predictions fail for the 

production of C and Y* hyperons in strangeness-exchange reactions 

on nucleons. 
5 

This suggests that the naive calculations of the three- 

point couplings of vector mesons between nonstrange octet baryons and 

strange decuplet hyperons is not given properly by the quark model. 

However the couplings of the nonstrange vector mesons to nonstrange 

baryons are well described by the model, as indicated by the success 

of the quark model in predicting 
2 

nucleon magnetic moments and total 

cross sections for reactions on nucleon targets and for the 4 

photoproduction reaction (la). The hyperon transitions (1~) and (id) 

test the coupling of a nonstrange vector boson between strange octet 

and strange decuplet baryons. So far this particular coupling has not 
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been tested. It is therefore of considerable theoretical interest to test 

the U-spin selection rule. This can be done by looking for Primakoff 

excitation of negative hyperons from heavy nuclei, as in the reactions 

(21, and comparing the cross sections with the corresponding Primakoff 

excitation of the A from a nucleon beam to test the relation (5). 

The quite interesting couplings of nonstrange bosom 

or Regge trajectories to strange octet baryons are also not yet tested. 

These can be investigated by examining the hyperon-baryon total cross 

sections. There are definite quark-model and symmetry predictions 

that relate these hyperon cross sections to meson-nucleon and nucleon- 

nucleon total cross sections that have already been observed. The 

quark model predicts that the C-N and 5 -N total cross sections should 

satisfy the relations 6, 7 

dp*) - G-p) = cr(K-n) - +tp) = 4mb, (64 

dz-P) - T(z-p) = r,(K-=) _ c(n+p) = 4mb, (6b) 

where the value of 4 mb, which is nearly independent of energy, is 

taken from experiment. 
7 

Thus u(Z -p) and ~(2~p) are expected to 

be nearly independent of energy and below the nucleon-nucleon cross 

sections by about 4 mb and 8 mb, respectively. 

Regge descriptions give similar predictions. The E-N 

and E- N cross sections are predicted to be similar in character to 

NN total cross sections--i. e., they are dominated by the Pomeron. 

The contributions of the leading exchange-degenerate secondary Regge 

trajectories are expected to cancel in these exotic (B = 2) channels. 
8 

In the SU(3) symmetry limit, the Pomeron contributions to all baryon- 

baryon cross sections are expected to be equal. In meson-baryon 

cross sections, this symmetry is seen to be broken; the KN Pomeron 

contribution seems to be about 4 mb below the nN contribution. The 

quark-model predictions (6) can be interpreted as requiring a similar 
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symmetry breaking for the Pomeron contributions in meson-baryon 

and baryon-baryon scattering. 

If the predictions (6) a.;e verified by experiment, this 

will constitute further evidence for exchange degeneracy of the leading 

trajectories and SU(3) symmetry breaking in the Pomeron couplings. 

Values for the couplings of the leading Regge trajectories are then not. 

obtained from these cross sections because of the cancellations of 

exchange degeneracy. They will be obtained from antihyperon-nucleon 

cross sections, in which the contributions from the exchange-degenerate 

pairs add rather than cancel. 

When antihyperon total cross sections become available, 

it will be interesting to examine linear combinations of cross sections 

that project dut t-channel exchanges with definite quantum numbers. 

The odd-signature isoscalar exchange (w exchange) is of particular 
9 

interest, since predictions from omega universality have so far been 

in remarkable agreement with experimental data for kaon-nucleon and 

nucleon-nucleon total cross sections, but have not yet been tested for 

strange baryons. One omega-universality prediction is 

4&) - u(*p) = f [GP) - u(pp)] - $ [ r(n-p) _ Jp)]. (6~) 

For the even-signature isoscalar exchange (Pomeron and f” exchange), 

the quark model predicts 

r(xp) t u(Ap) = i[r(n-p) t r(r+p) t rr(K-p) t m(K’p) t Ir(K-n) t m(K’n)]. (6d) 

The corresponding quark-model prediction for even-signature isoscalar 

exchange for nonstrange baryons disagrees with experiment. The 

ratio of baryon-baryon to meson-baryon cross sections is 15-20s 

greater than the famous quark-model prediction of i and seems to 

be independent of energy. 
10 

It will be interesting to see whether a 

similar discrepancy prevails for the relation (6d). 
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III. DIFFRACTIVE EXCITATION OF NEW RESONANCES 

Diffractive excitation of hyperons might reveal new 

resonances not previously discovered; for example, there might be 

strange partners to the Roper (1479 nucleon resonance. A very simple 

picture can be used in the quark model to explain how certain resonances 

would be excited diffractively and would not be seen in common excitation 

mechanisms. In a variety of approaches, the coupling of baryon resonances 

to meson-baryon channels is described as due to a transition of a single 

quark in the baryon while the other two quarks remain as spectators. 
11 

This is true (1) in the model of boson emission as the emission of a boson 

quantum by a single quark, l2 (2) in the Harari-Rosner duality-diagram 

description of production and decay of resonances, 
13 

and (3) in the 

Levin-Frankfurt model’ of meson-baryon scattering. 

In a three-body system, there are hvo independent orbital 

angular momenta. In resonance excitation with this simple “spectator” 

picture, it is convenient to choose these two orbital angular momenta 

to be (1) the relative orbital angular momentum of tbz two spectator quarks 

and (2) the angular momentum of the active quark with respect to the 

center of mass of the spectator quarks. The states of, the spectator 

quarks and their relative orbital angular momentum do not change in 

such a transition. In the symmetric quark model, the quark in the 

low-lying baryon octet and decuplet are all in relative s states. Thus 

this model suggests that the only resonances excited in this way are those 

in which two quarks remain in a relative s state and the total orbital 

momentum is carried by the third quark. States that involve siinultaneous 

excitation of both orbital angular momenta are not reached by this 

mechanism. 
ii 

Difficulties arise in the application of this picture to 

diffraction dissociation processes. These are most simply seen in the 

case of Ai and Q production by pion and kaon beams, respectively. 
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In the quark model, these excitations are 0‘ - 1’ transitions between 

the ‘S, and 3Pi configurations and require both a spin flip and an orbital 

excitation by one unit of orbital angular moment-. If this is produced 

by single-quark scattering, the orbital and spin contributions would 

not be expected to be correlated. Thus, a final state with total spin S = 1 

and orbital angular momentum L = 1 would not have L and S coupled to 

a definite total angular momentum J, but would be a mixture of 0 + if, , 

and 2 
t 

states. This picture predicts excitation of all three states, with 

ratios depending upon Clebsch-Gordan coefficients, in disagreement with 

Morrison’s rule 
14 

that only unnatural-parity If states are excited by 

diffraction dissociation-the natural-parity Of and 2 
t 

states are not. 

The undesired excitation of 0’ and 2+ states can be 

eliminated by adjusting the relative phases of the two terms arising in the 

model from quark and antiquark excitation so that they cancel one another 

in the Ot and 2 
t 

excitations and add constructively in the 1 
t 

excitation. 

This can be done elegantly by writing the expression for the transition 

matrix element of the hadron undergoing diffraction dissociation in the 

form 

(~j~(?jli)lA) = O3 1 CGiXFi-3e iq * ? IA) ' (7) 

where A and B are the initial and final hadron states, (r. I, zi, and Fi are 

the spin, momentum, and coordinate of the ith quark, a is the momentum 

transfer, and the sum is over all quarks and antiquarks. The operator 

appearing in the matrix element is a sum of single-quark operators, 

as required by the simple picture. The leading term in the expansion 

of the exponential is a polar vector and can only connect a O- initial 

state to a 1 
t 

final state. If this result (7) can be derived from some 

dynamical principle, it would give an elegant derivation of Morrison’s 

rule. However, such a single-quark operator is rather artificial in the 

simple picture. -_ 

we now consider a new alternative description for diffraction 



dissociation, in the spirit of “two-component duality” in which diffractive 

processes that remain constant at high energy are qualitatively different 
15 

from other exchanges that decrease with energy. It also fits the general 

philosophy that diffraction dissociation is a kind of elastic process in which 

the probability of exciting a particular resonance depends on the overlap 

of the initial- and final-state wave functions. In this description of 

diffraction, elastic scattering dominates at low momentum transfer 

because all excited-state wave functions are orthogonal to the initial state 

and have no overlap. However, at high momentum transfers the initial 

and final baryons are not at rest in the same Lorentz frame. Therefore 

the overlap integral calculated, say, in the rest frame of the produced 

resonance includes a Lorentz boost of the initial baryon state. This 

changes the wave function by producing Lorentz contractions and Wigner 

rotations of the spins and thus introduces components that can look like 

isobars and produce inelastic transitions. Because of the mass differences, 

there is always a considerable momentum transfer in isobar production 

even in the forward direction, and a Lore&z boost is always required. 

Since the Lorentz boost affects all of the three quarks in the 

baryon, there is no reason to prefer excitations of only a single quark from 

the initial state. Diffractive excitation can thus produce states that differ 

from the target by simultaneous excitation of two quarks. Such states 

would decay dominantly via modes that are not quasi-two-body, since the 

decay to the baryon octet would require de-excitation of two orbital angular 

momenta and hence would be forbidden by the common mechanism. A 

I+ 
2 state could be formed by having each of the two internal orbital angular 

momenta excited to a p wave since these two l-unit orbital angular momenta 

can be coupled with the three quark spins to give a total angular momentum 

of *. One can see qualitatively how such an excitation occurs in a simple 

model analogous to atomic physics, with quarks described by solutions of 

the Dirac equation in an external field. The lowest state of the hydrogen 

atom is an 51/Z state but there are small components in the wave function 
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that look like pi ,2. A Lorentz boost mixes the s~,~ and the p 
i/z 

wave 

functions. Such a transformation on two quarks adds two units of orbital 

angular momentum while leaving the total angular momentum j of each 

individual quark unchanged. This oversimplified picture should not be 

taken too literally, but the observation that baryon resonances that are 

not coupled strongly to quasi-two-body channels might be diffractively 

produced may well have a more general validity. 

This model for diffractive processes can be formulated 

more quantitatively as follows. Hadron wave functions from the nonrelativistic 

quark model are considered to be reasonable approximations only in the 

hadron rest frame. 
i6 

For hadrons in motion, there are Lorentz contractions 

of the spatial wave functions and Wigner rotations of the spins. we assume 

that as a result of these relativistic effects the wave functions of states 

produced by diffraction dissociation are mixed into the wave function of 

the incident hadron. We assume that in the diffraction process the hadron 

receives a momentum transfer without any change m the other degrees 

of freedom. This is consistent with the philosphy that the Pomeron 

carries the quantum numbers of the vacuum. Thus if a quark in a hadron 

is described by a Dirac spinor, the transition is described by multiplying 

the wave function of each quark by a plane wave that does not affect the 

spinor degrees of freedom. The result is 

_- 

(B 1 TD(7j) ) A) = (B 1 l”I elqi 
. 7. 

l[A). 
i 

(8) 

where the subscript D (diffraction) distinguishes the expression (8) from 

(7). and qi is the portion of the momentum transfer given to the ith quark. - 

For convenience consider the process in the rest frame of 

the final state. This is also the Jackson frame co&nonly used for the 

analysis of the decay angular distributions of the resonances produced. 

The wave function of the final state at rest is given directly by the 

nonrelativistic quark model. The initial-state wave function that describes 

a moving hadron is constructed by boosting the nonrelativistic quark-model 
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wave function from the rest frame to the required incident velocity. 

That is, 

IA(?)) =UA3 IA (0)); (9) 

where 1 A(0)) and 1 A(q) are the wave functions of the initial state in 

its rest frame and in the Jackson frame, respectively, and U -is the 
Av 

Lorentz boost from the rest frame of the initial hadron to the state in which 

it is moving with velocity 3. The boost U 
AT: 

acts both on the spatial degrees 

of freedom and on the Dirac spinor indices. 

If the motion of the quarks within the hadron is considered 

as nonrelativistic, the spatial part of the boost simply shifts the momentum 

by multiplying the wave function by a plane wave. We neglect the Lorentz 

contraction of the wave function. Since this boost brings the wave function 

from rest to the incident velocity while the transition from the initial 

to final states (2) brings the hadron to rest, the spatial part of the Lorentz 

boost in Eq. (3) cancels the plane wave in the transition matrix element 

(2) if the momentum transfer is appropriately divided between the 

constituent quarks. If these spatial factors do not exactly cancel the 

spatial form factor that remains will be neglected at this stage together 

with such other spatial effects as the Lorentz contraction. 

Equation (9) is now used to write a simple expression 

for the transition (8) in which all wave functions are expressed in their 

rest frames and can be described by the nonrelativistic quark model. 

Since the spatial effects cancel in our approximation, only spin effects 

remain and 

(B (‘1 1 TD 1 A(3) = (B(0) lU;$ 1 A(O)) , 

where A(0) and B(0) are the quark-model hadron wave functions in the 

respective rest frames and U 
(s) 
A7 

1s the spin part of the Lorentz boost 

that takes the incident particle A from its rest frame to the velocity T: 

in the Jackson frame. 

Two qualitative features are immediately evident from 
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this expression (10). 

1. Morrison’s rule. The operator Uzs is an exponential 

function of the generator of Lorentz transformations. Since the generator 

is a polar vector, the expansion of the exponential in a power series 

contains different powers of the same polar vector-i. e., only terms that 

have natural parity. If the initial state A is a pseudoscalar meson, there 

will be nonvanishing excitation only to states having unnatural parity O-, 

it ) 2-, . . as given by Morrison’s rule. For baryons the situation is 

more complicated because the initial spin of t can always be coupled in 

two ways to a given natural-parity excitation. 

2. Deviations from the simple spectator picture. The 

transition operator is manifestly not a single-quark operator since it 

produces Lorentz transformations on all the quarks in the system. This 

model thus predicts that diffraction dissociation can excite states that 

are not produced by conventional exchanges. This might explain the 

apparent anomaly associated with the N( 1470). 

These points are somewhat illuminated by examining the 

expansion of the Lorentz transformation in powers of its generator M. 

In this expansion 

ivM 2 2 
e = i t ivM t *(iv) M t * . . , (11) 

the Lorentz generator M is an ‘I odd” operator in the Dirac sense. In 

the nonrelativistic limit, it connects “large” and “small” components 

of a Dirac wave function. Thus in a nonrelativistic approximation, the 

matrix element of the operator (i 1) for a given transition should be given 

by the leading nonvanishing term in the expansion. The first term describes 

elastic scattering. Since M is a polarvector, the second term describes 

the excitation of states whose parity is opposite that of the ground state 

and the third term describes excitations with the same parity as the ground 

state. 

The second term(which describes the odd-parity excitations) 

can still satisfy the simple spectator picture under the reasonable assumption 



that the Lorentz generator M is additive in the individual quark variables 

to a good approximation. However, the third term (which describes the 

even-parity excitation) is manifestly not additive and contains two-quark 

excitations even if M is additive. With this interpretation, production of 

even-parity states with two-quark excitations should be expected in 

diffraction dissociation. Such two-quark excitations we uld not be produced 

by nondiffractive exchanges described by the simple picture and would 

not decay by the conventional quark-model mechanism to a meson-baryon 

two-body channel. They could not be observed as resonances in meson- 

baryon phase-shift analyses. This would support Morrison’s conjecture 

that resonances produced diffractively are somehow different ‘from 
14 

resonances produced in other ways. Furthermore, since there are as 

yet no diffractively produced hyperon resonances, the SU(3) partners of 

diffractively produced double-quark excitations would not yet have been 

observed, and there would be difficulties in classifying such resonances 

as the N(1470) in SU(3) representations. 

Quantitative calculations of diffraction dissociation in this 

model are more difficult because they depend more critically on effects 

that are normally neglected in the nonrelativistic quark model. Since 

the generator M is an odd operator, it necessitates the use of the small 

components of the wave function as well as the large components. 

Conventional nonrelativistic reduction procedures used in nuclear physics 

are ambiguous in the quark model. The use of the Dirac equation to 

connect small and large components requires some knowledge of the 

interaction potential and, in particular, of whether it is a four-vector 

or world scalar. These ambiguities become particularly significant 

and annoying for the case of very strong binding. 

Even the most naive calculations can only be expressed in 

terms of a free parameter having the dimensions of a mass and a value 

anywhere between l/3 the baryon mass and the mass of a free quark. 

The picture of a Dirac particle moving in some kind of 
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self-consistent central field (the analog of the one used for relativistic 

corrections in nuclear physics) does provide some intuition for qualitative 

thinking about this model. In the symmetric quark model, the three quarks 

in a baryon are considered to be in s 1,2 orbits. In the Dirac description, 

these would have small components that look like p 
iI.2 

wave functions. A 

Lorentz transformation acting on this spinor mixes the s 
l/2 

and ~1,~ wave 

functions and thus can produce configurations in which the quark is 

excited up to the pi,2 orbit. A single-quark excitation of this type describes 

the excitation of the if meson resonances Ai and Q and of i- and $- 

baryon resonances that are p-wave excitations in the quark model. Such 

excitations should also appear in the Levin-Frankfurt model since they 

are single-quark excitations. The next even-parity excitations would 

then be described by simultaneously exciting two quarks to p 
i/2 

orbits. 

This gives states that are not excited in the Levin-Frankfurt model. The 

first example of such a state might be the N(1470). 

Excitations of higher resonances require higher terms in 

the expansion (5) and cazmot be considered in a consistent way without 

re-examining the entire model from the beginning and looking for other 

higher order relativistic effects. These include, for example, the Lorentz 

contraction of the spatial part of the wave function produced by the boost 

U -in Eq. (9). 
av 

This has been neglected in the derivation of Eq. (10) by 

making the nonrelativistic approximation, in which all momentum components 

in the wave function are shifted by the same amount T in the Lorentz 

transformation. Taking this effect into account introduces an additional 

orbital factor in Eq. (IO), and it again would produce only natural-parity 

excitations but would allow for orbital excitations of quarks beyond the 

s1/2 
and ~1,~ orbits. However, the precise nature of excitations seems 

to depend on detailed characteristics of the wave functions and cannot 

be described as reliably as the qualitative features. 

The principal experimentally verifiable qualitative predictions 

of this model are baryon resonances that are observed only in diffraction 
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dissociation and whose decay into two-body channels is strongly inhibited. 

With hyperon beams available for diffraction dissociation studies of strange 

baryons, such resonances should be observed as the previously missing 

SU(3) partners of diffractively excited nonstrange baryon resonances. 

The first such resonances to be expected would be the SU(3) partners of 

the N” (1470), which would be a Y*(1620) and a E:*( 1770). 
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